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Transition to turbulent ° ow in aerodynamics

By Robert I. Bowles

Department of Mathematics, University College London,
Gower Street, London WC1E 6BT, UK

The di¯ cult problem of understanding the physical mechanisms at work in the
change from laminar, or smooth, ®ow to random turbulent ®ow, with its wide range
of active time- and space-scales, has occupied engineers, physicists and mathemati-
cians for the past century. When an airfoil is placed in and parallel to a current of
fast-moving air, a so-called boundary layer forms on its surface as the velocity of the
air at the surface must be reduced to zero. Near the front of the airfoil the boundary-
layer ®ow is smooth and steady, but further downstream it is seen to become highly
irregular, unsteady and turbulent, often at a well-de­ ned front. Scientists working in
transition prediction aim to answer the questions of where and why this transition
occurs. It is a problem distinct from, but related to, that of understanding turbulent
®ow itself. It is of prime industrial importance. For example, a turbulent ®ow o¬ers
more drag resistance, and, indeed, an aircraft designed so that more of the ®ow over
its wings is laminar can carry more passengers and much less fuel. Understanding
the physical structures and ®ow patterns visible in the late end stage of transition
and the initiation of turbulent spots, isolated patches of turbulence surrounded by
laminar ®ow, should also throw much-needed light on the structures seen in fully
developed wall turbulence and help in the equally di¯ cult, distinct, problem of mod-
elling turbulent ®ow.

There are many possible routes through transition, depending on the ®ow con­ g-
uration and geometry and the method in which transition is initiated by any of the
range of possible background disturbances present, either in the free stream or in
the form of roughness on the surface, for example. In the past 20 years, techniques
for tracing the linear and nearly linear growth of small disturbances in the boundary
layer have been developed that could form part of e¬ective design tools for engineers.
There has also been an increased theoretical understanding, made possible by the
application of high Reynolds number asymptotic theories, of the myriad of possible
interactions between disturbances driving this relatively slow stage of the transition
process. Much important work remains to be done to include in any design tool the
important processes occurring at the two ends of this process. Firstly, how do distur-
bances enter the boundary layer to be ampli­ ed, known as the receptivity problem,
and secondly, what happens at the end stage, where the disturbances have grown so
large that the nearly linear theories are no longer applicable?

Recent experimental work has shown a remarkable similarity in the characteristics
of this ­ nal breakdown among a variety of ®ows. Two-dimensional ®ows, such as
that over a plate aligned with the ®ow or in a channel or pipe, gradually develop
three-dimensional structures, known as lambda vortices. These then rapidly break
down in two distinct ways, which are both active almost simultaneously. One gives
rise to spikes: short-lived, large-amplitude pulses, which are practically deterministic
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in nature. The second involves a secondary instability and the initiation of ran-
dom ®uctuations. Three-dimensional ®ows, such as those on swept wings, develop
cross-®ow vortices, which themselves seem to break down via a secondary instability
mechanism, possibly similar to that seen in lambda vortices.

This article reviews recent developments in the ­ eld of transition research, con-
centrating on those related to the late stages of breakdown and the onset of random
behaviour. It brings together results from young experimentalists, computationalists
and theoreticians and looks forward to an increased understanding of this challenging
and important problem.

Keywords: boundary-layer transition; spikes; lambda vortices

1. Introduction

The prediction of the point of transition from smooth to turbulent ®ow is a problem
of immense importance to industry. Turbulent ®ow is characterized by a wide range
in the scales of regions of circulating ®ow known as eddies. These circulations are able
to transport heat, momentum and tracers such as chemical reactants more e¬ectively
than is the case in laminar ®ow. This has many implications. We may want to provoke
transition to ensure mixing of air and fuel in combustion. A turbulent ®ow over the
latter half of a wing ensures a transport of high momentum to ®uid close to the
airfoil. This increases its inertia and helps prevent separation of the ®ow from the
wing, which would lead to a dramatic drop in lift with disastrous consequences,
particularly during landing. In ®ight conditions, in contrast, the same physical e¬ect
leads to an increase in the drag on the wing and turbulent ®ow is, therefore, to be
avoided here. It has been calculated that fuel savings of 20% could be possible for
an airliner designed so that much of the ®ow over it is laminar. In jet engines, the
exhaust gases are at very high temperatures, and an increased heat transfer in any
turbulent ®ow over the rotor blades leads to their rapid heating and a reduction in
their lifespan. A similar problem arises at the very high (hypersonic) speeds of the
reentry of reusable launch vehicles such as the space shuttle, where increased heat
transfer can lead to degradation of protective tiles.

Away from the ­ eld of aeronautics, the transition phenomenon is a limiting feature
for computer codes, which aim to predict the ®uid ®ow in many applications, engine
and pump design for example. They do so by solving the governing equations|the
Navier{Stokes (NS) equations|numerically. However, transition is associated with a
rapid cascade of motions towards shorter time- and space-scales and the codes have to
resolve these new features accurately together with the larger-scale original motions.
Computers with such speed and storage capabilities are still many years away. Direct
numerical simulation (DNS) of the transition process is presently only possible in
simpli­ ed geometries. In engineering applications, this problem is often approached
through the use of empirical models for the prediction of the transition point. A
separate turbulence model can then be used downstream of this point. However, the
process of transition is a complex phenomenon a¬ected by many inputs, and a model
successful in one situation may fail dismally in another.

There are many di¬erent routes to transition. Probably the best understood is
the so-called K-type transition of the planar ®ow over a ®at plate (Klebano¬ et al .
1962). We will concentrate on this ®ow, primarily, because the features seen in the
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Figure 1. An overview of the transition process.

late stages of transition appear to be in common with those seen in more complicated
®ows, which may exhibit di¬erent phenomena in the earlier stages. If the air®ow in a
wind tunnel has a su¯ ciently low turbulence level, the ®ow over a ®at plate aligned
with the ®ow may be disturbed with an arti­ cial, controllable, planar forcing and
the disturbance traced downstream (see ­ gure 1). In ®ight conditions, the transition
process is so rapid that it takes place at a well-de­ ned front, as mentioned in the
abstract. If the initial amplitude is su¯ ciently small, so-called Tollmien{Schlichting
(TS) waves are seen. These instability waves are named after the German workers of
the 1920s and 1930s, who predicted their existence theoretically (Heisenberg 1924;
Tollmien 1929; Schlichting 1933), although they were not observed in experiments
until wind tunnels had become of su¯ ciently high quality (Schubauer & Skramstad
1943). Incidentally, at altitude, the disturbance level is usually much less than that
attainable in a wind tunnel. Recent work aimed at developing e¯ cient methods for
predicting the growth rate of these waves is described in x 2 of this paper. A promising
practical approach, not described here, is to solve the so-called parabolized stability
equations (PSEs) (Herbert 1997), which model the NS equations and attempt to
describe a relatively small disturbance developing slowly in a growing boundary layer.
This is a useful engineering tool but it is unable to describe the rapid breakdown to
short scales described below.

The two-dimensional waves themselves then develop into growing three-dimension-
al structures by a so-called secondary instability process. These develop nonlinearly
into lambda ( )-shaped structures, known as lambda vortices, and associated strong
shear layers: regions in which the ®uid velocity changes rapidly. These features are
described further in x 3 below. When amplitudes reach su¯ ciently large values, there
is a rapid breakdown to short-scaled structures known as spikes, named after the
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spikes seen in traces of perturbation velocity against time. This is followed by the
onset of random behaviour and the eventual development of a turbulent ®ow. This
is often through the growth of isolated patches of turbulence, or spots, from the
regions of the spikes that merge as they travel downstream. An excellent description
of this process is given by Kachanov (1994). Recent experimental results, and new
experimental techniques illustrating these latter stages, are described in x 3. Strong
shear layers, -shaped structures and their subsequent breakdown are also seen in
so-called N-type transition of the ®ow over a ®at plate, which occurs at lower input
amplitudes (Bake et al . 2000), in pipe ®ows (Han et al . 2000), and in ®ow over
compliant surfaces (Metcalfe et al . 1991). Strong shear layers, and their breakdown to
random disturbances, are seen in the transition of boundary layers in which the ®ow
is not in a single direction during the latter stages of so-called cross-®ow instability
(Wintergerste & Kleiser 1995; Lerche 1997).

Fully developed turbulent ®ow over a surface is a complicated, three-dimensional
phenomenon. However, structures may be identi­ ed within the ®ow and many of
these have similarities with the structures seen in the late stages of the transition pro-
cess. From a theoretical point of view, the similarities are especially strong between
the mechanism of the breakdown of lambda vortices and that of the eruption of ®uid
from regions close to the surface, which occurs in turbulent ®ow (Walker 1990a; b;
Li et al . 1998). An understanding of these features gained from the study of tran-
sition could help in the study of how turbulence is maintained against the natural
dissipation of the energy in the ®ow.

The NS equations are nonlinear and, at moderate speeds, have a single non-
dimensional parameter, the Reynolds number Re. This is the ratio UL= , where
U and L represent typical velocity and length-scales, respectively, for the ®ow, and

is the kinematic viscosity, a measure of the `stickiness’ of the ®uid. The Reynolds
number for a wing in ®ight is typically 108. The inverse of the Reynolds number
multiplies the terms in the NS equations representing viscous di¬usion of momen-
tum in the ®uid. At large Re, one might therefore presume that viscous e¬ects are
unimportant. However, where the ®uid is in contact with a solid body, such as a
wing, the velocity of the ®uid relative to the body must be zero. Viscosity acts in a
thin layer|the boundary layer around the body|to reduce these velocities to zero.
This is an example of the separation of the space- and time-scales, over which di¬er-
ent physics is active, which occurs at large Re. The theoretical work described in x 4
takes advantages of this separation and derives reduced sets of equations successful
in describing some features of breakdown.

2. The instability mechanism

From the theoreticians point of view, the problem of transition is viewed as a nonlin-
ear stability problem. The solution for the steady boundary-layer ®ow over the ®at
plate|the so-called Blasius solution|describes how the boundary-layer thickness
grows downstream from zero at the leading edge due to a balance of inertial and
viscous e¬ects, growing more slowly for higher Re. A ­ rst step then is to look for
small-amplitude wave-like perturbations of a given frequency to this ®ow and so to
neglect the nonlinear terms in the NS equations. If the boundary-layer growth is also
neglected, this leads to the Orr{Sommerfeld (OS) equation governing the stability of
the ®ow local to some point on the plate (Orr 1907; Sommerfeld 1908). This process
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Figure 2. The neutral curve of the Blasius boundary layer calculated from OS equation ({ { {)
and experimental points from Ross et al . (1970) ( ) and Klingmann et al . (1993) ( ). Also shown
are asymptotic predictions for the lower branch for large R and predictions from the composite
expansions of Healey (1995), which straddle both branches (||).

neglects viscous e¬ects in discarding the velocity pro­ le’s development, but retains
viscous terms in the OS equation. Indeed, viscosity is essential in the growth mech-
anism for TS waves (Lighthill 1963). The predicted length-scale of the TS waves is
shorter than the scale over which boundary-layer growth occurs, however, so this can
be a good ­ rst approximation to reality.

A common choice for the Reynolds number R appearing in the OS equation is
based on the local boundary-layer thickness, , and the local streamwise velocity
outside the boundary layer, U 1 . It grows downstream from zero at the leading edge
as the boundary layer grows and scales as the square root of the global Reynolds
number Re. Figure 2 shows the so-called neutral curve in the R {! plane, with !
a non-dimensionalized wave frequency. Disturbances lying on this curve are neutral,
meaning that they have zero growth rate, while those inside grow so that the curve
can be used to predict which disturbances grow at any point in the boundary layer.
All disturbances decay for R 520, the neutral point, explaining the delay in
the onset of transition from the leading edge. The ­ gure also includes experimental
measurements of the neutral curve, illustrating the range of Reynolds numbers over
which laminar ®ow may be maintained in a good wind tunnel (Ross et al . 1970;
Klingman et al . 1993).

The lower and upper portions of the curve are known as the lower and upper
branches, respectively. The structure of TS waves at large R was elucidated by
Reid (1965), Smith (1979a) and Bodonyi & Smith (1981), who showed that lower-
and upper-branch neutral waves have frequencies that scale with R 1=2 and R 1=5,
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respectively. The di¬erence in scales is due to the slightly di¬erent physics active
in maintaining the wave motion. Viscosity may be neglected except in a thin layer
close to the plate and in the so-called critical layer located where the streamwise
velocity of the Blasius ®ow is equal to the speed of the wave. Both these layers are
relatively close to the plate, where the velocity pro­ le may be approximated by a
linear increase from zero at the plate, thus neglecting the curvature of the pro­ le.
For the lower frequencies close to the lower branch, these two layers merge into a
single region and can interact. Viscosity is then able to destabilize the ®ow. As the
frequency increases, the layers separate, interact less strongly and the growth rate of
the waves is reduced. Finally, close to the upper branch, the weak stabilizing e¬ect
of the curvature of the Blasius ®ow is felt and the waves become neutral and decay.
Much theoretical work, concentrating on disturbances close to the upper branch,
has been pursued by Goldstein (1995). The theory described in x 4 of this paper, in
contrast, looks at disturbances with a lower-branch structure.

In fact these predictions for the neutral frequencies at high R had been known
for some years from a study of the OS equation (see, for example, Reid 1965). The
contribution of the later authors lay in the casting of the predictions as `rational’
solutions of the NS equations. This has the technical meaning that the magnitude of
each neglected term in the equations, and so of the physical e¬ects they represent, is
associated with a particular inverse power of R , and can, in principle, be included in
the prediction by taking more terms in an expansion as R becomes large. Although
accepted as being of immense theoretical value in clarifying the mechanism of the
waves, the practical use of such approaches is sometimes limited as the parameter
assumed small in the expansion is often not small at Reynolds numbers of prac-
tical interest. However, the expansion can be continued to include the growth of
the boundary layers; the predictions for the lower branch are illustrated in ­ gure 2.
Jonathan Healey of the University of Keele has shown that the predictions for the
upper branch only hold good to the right of the kink in the upper branch (Healey
1995). At transition Reynolds numbers, he has shown that TS waves have the char-
acter of lower-branch disturbances even along the upper branch, in that the viscous
layers mentioned above remain merged. He has recently generalized this expansion
approach, extending the work of Hultgren (1987), and used symbolic algebra pack-
ages to generate results valid at transition Reynolds numbers over both branches
(see ­ gure 2). These predictions include the e¬ects of boundary-layer growth and it
is hoped that this work could lead to an alternative technique for the calculation
of disturbance growth rates as opposed to the use of the Orr{Sommerfeld equation
that, we recall, neglects boundary-layer growth and is signi­ cantly faster than the
alternative PSE approach. Furthermore, the method may be extended to include a
­ nite disturbance amplitude by incorporating the nonlinear terms in the NS equa-
tions at transition R , so extending the predictions of Smith (1979b), which are valid
for R 1.

3. Breakdown

The process of the nonlinear development and breakdown of the TS waves has been
clari­ ed by recent careful experiment and by DNS of the transition process. Interest-
ing three-dimensional structures are seen to develop. The condition of zero velocity
at the plate surface causes the velocity necessarily to increase from zero towards the
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Figure 3. A -vortex at the 3-spike stage of breakdown measured in a wind tunnel by Fern-
holz & Bake (1998) and made visible by plotting isosurfaces of perturbation velocity u 0 .
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Figure 4. Experimentally measured shear layers, revealed by plotting contours of
spanwise vorticity (Fernholz & Bake 1998).

value outside the boundary layer. This rate of increase is termed the pro­ le’s shear.
A more general description of this rate of change uses the concept of vorticity, which
measures the degree of swirl or circulation in the ®ow about a line. Just above a point
in the boundary-layer shear ®ow the velocity is just greater than that just below (see
the pro­ le in ­ gure 1). This may be interpreted as a clockwise swirl or vorticity about
the point and, more generally, in a planar ®ow, about a line parallel to the plate and
normal to the direction of ®ow. When the ®ow becomes three dimensional in the
secondary instability process, these vortex lines become warped and stretched, and
motion occurs in a direction parallel to the lines. This causes a ®ow of swirling ®uid
towards and along the vortex lines. In just the same way as an ice-skater exploits the
conservation of angular momentum to make herself spin faster as she draws her spin-
ning arms in towards herself, this inward motion of ®uid causes the swirl to intensify
generating vortical structures: the lambda vortices. These have their downstream-
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Figure 5. Perturbation velocity (u 0 ) traces and their wavelet transforms taken from a transitional
wave packet (Breuer et al . 1997). (a) A single spike; (b) a secondary instability. Their respective
transforms ((c) and (d)) show a cascade of bursts towards higher frequencies. and l are a
non-dimensionalized time- and length-scale.

pointing head further from the wall than their trailing legs as they are stretched out
in the shear ®ow. A lambda vortex, measured in a wind tunnel by Sebastian Bake of
the Technical University of Berlin, is illustrated in ­ gure 3 (Fernholz & Bake 1998).
The circulation about the vortex’s legs acts to move slower-moving ®uid up from
close to the wall, generating delta-wing shaped strong shear layers between the legs.
These layers separate this slower-moving ®uid from the faster-moving ®uid further
out in the boundary layer. These shear layers are well illustrated in ­ gure 4.

The experiments of Breuer et al . (1997) of Brown University, Providence, Rhode
Island, illustrate well the development of the disturbance after the shear layers have
been established. They examine the development of a wave packet; a perturbation
velocity trace from their experiment is illustrated in ­ gure 5a. There is a rapid drop in
perturbation velocity from positive to negative values. This feature is often described
as the ­ rst spike and corresponds to the passage of a strong shear layer. In the centre
of the event is a kink with an associated higher-frequency small-scale structure. This
would correspond to the 2-spike stage of the breakdown, but the physics of this
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second spike is very di¬erent from that of the ­ rst, as indicated by its high-frequency
content. This second spike is, therefore, often termed the ¯rst spike. This kink is
present in every run of the experiment with only a small variation in its amplitude
and position. It is therefore quite repeatable and not associated with turbulence. The
three-dimensional structure of the spikes can be seen in ­ gure 3, which corresponds
to the 3-spike stage. The spikes in the velocity trace can be associated with the
ring-like hairpin or omega ( ) vortices. These travel downstream, retaining their
coherence and interacting only weakly with the rest of the ®ow (Kachanov 1994).

A trace from further downstream is shown in ­ gure 5b. The disturbance has grown
in amplitude, but, in addition, there are small-amplitude high-frequency oscillations
present. The experiments showed that these oscillations are to be found just upstream
of the position of spike generation. They are random in phase and amplitude from
realization to realization and their growth leads directly to turbulence. The exper-
iments of Borodulin & Kachanov (1989), described in Kachanov (1994), show that
it is possible for these two types of disturbance to coexist. They identi­ ed that the
spikes had originated further out in the boundary layer than the random oscillations,
which could be associated with the shear layer between the legs of the lambda vortex
and indeed travel downstream with it.

The structure of these bursts of frequencies higher than the fundamental wave
packet may be clari­ ed using the wavelet transform (WT) ­ rst applied to boundary-
layer transition by Jim Shaikh of Rover Group Ltd, Warwick, UK (Shaikh 1997).
The WT decomposes a single time trace into the two-dimensional wavelet plane, with
axes of time and frequency by repeated convolution, or comparison of the trace with
wavelets of varying scales. A wavelet is, for example, a sinusoidal trace or Fourier
mode of a given frequency with a constraining envelope, so that the trace has a given
width and decays to zero at both ends. The frequency and width of the wavelet trace
vary with the scale of the motion they aim to pick out from the original signal.
They are able to isolate short-time-scale high-frequency disturbances in the signal.
In contrast, traditional Fourier decomposition into purely periodic waves of a given
frequency fails to resolve the localized nature of bursts and measures only a ­ lling
of the power spectra as transition proceeds. The wavelet transforms of the velocity
traces are shown in ­ gure 5c; d. In ­ gure 5d, the peak at ca. = 1:57, l = 0:105
corresponds to the spikes, while that close to = 1:55, l = 0:06 is associated with
the high-frequency waves.

Sebastian Bake has produced the intriguing ­ gure 6. This plots an isosurface of a
measurement of the uncertainty involved in measurements due to the unpredictability
of the ®ow. We can see that this is concentrated in two areas. The ­ rst is in the
position of the omega vortices. It seems likely that this is associated with slight
variations in their formation process. The motion and interaction of vortices can
easily lead to chaotic behaviour. The second is associated with the shear layer and
may be interpreted as arising from an instability of the shear layer. These two sources
of unpredictable behaviour were identi­ ed by Sandham & Kleiser (1992) from DNS
of channel ®ow transition.

4. Spiking as wave breaking

The three-dimensional nonlinear development of lower branch TS waves towards
breakdown at large R is governed by the so-called triple-deck equations, which
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may be rationally derived from the NS equations (see ­ gure 7). Tollmien{Schlichting
waves are long compared with the boundary-layer thickness, but not as long as the
scale over which the boundary layer has developed. As a result, viscosity has an
in®uence on their motion over a distance normal to the plate that is less than the
full boundary-layer thickness. The background pro­ le here is just a simple constant
shear pro­ le. This region close to the plate is the lower deck and corresponds to
the merging of the viscous regions at the surface and about the critical layer. The
middle deck is a layer whose thickness is that of the boundary layer. The motion
here due to the wave is inviscid to ­ rst order and corresponds to a vertical heaving
motion in response to the ®ow closer to the wall. Both these regions are relatively
long and thin and can support no normal pressure gradients. Instead, the pressure
perturbations due to the wave must decay in a region outside the boundary layer of
wall-normal extent comparable with the disturbance wavelength. This region is the
upper deck. The important constraint on these motions, which ­ xes the scalings of
the lower branch, is that the pressure perturbations in this inviscid upper deck are
of the same size as those generated by the viscosity-a¬ected ®ow close to the wall.

The linearized version of these equations, obtained by neglecting the nonlinear
terms, captures the OS solution. A weakly nonlinear version captures the onset of
three-dimensional spanwise perturbations (Smith & Walton 1989; Stewart & Smith
1992; Smith & Bowles 1992). The fully nonlinear version is capable of describing the
generation of lambda vortices described in x 3. Importantly for the description of the
breakdown process, Smith (1988) has shown that the equations have a ­ nite-time
singularity, meaning that their solution ceases to exist and cannot be followed after a
given time. The singularity has the following characteristics. Firstly, it is associated
with a shortening of the streamwise length-scale, with large local values of streamwise
pressure gradient and rapid streamwise changes in perturbation velocity. Secondly, it
is associated with a su¯ ciently strong shear layer, in the sense that the instantaneous
two-dimensional velocity pro­ le along the centreline of the lambda vortex satis­ es
a certain mathematical constraint. This constraint relates the velocity pro­ le across
the boundary layer to the ®uid velocity c at the so-called in®ection point, the position
of maximum shear. Thirdly, the in®ection point coincides with the critical layer of
the nonlinear disturbance, which itself travels downstream with speed c.

Smith & Bowles (1992) showed that this condition is closely satis­ ed by the veloc-
ity pro­ les measured in channel ®ow transition by Nishioka et al . (1979) at the ­ rst
spike: the rapid drop in perturbation velocity. We can deduce that the onset of the
singularity corresponds to this spike. The singularity in the solution of the triple-deck
equations implies that they omit some physics vital in the later stages of transition.
The shortening length-scale implies that normal pressure gradients must become
more important. We must therefore re-examine the NS equations close to this sin-
gularity and derive a new set of equations representing the subsequent development
of these shorter-scaled, higher-frequency components generated as the singularity is
approached. This is described in Li et al . (1998). These new equations have solu-
tions reproducing the kinks or higher spikes, the kinks being supported by normal
pressure gradients. There are strong analogies with the breaking of an undular bore,
a nonlinear free-surface wave seen moving upstream of a steady disturbance intro-
duced into a relatively fast-moving free-surface ®ow. The initial disturbance to the
surface is caused to steepen by nonlinearity and its length-scale shortens. A wave
train then develops in the lee of the bore corresponding to the spikes seen in the
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transition process. Furthermore, these equations themselves exhibit a singularity as
the kinks are generated. This can be removed on a still shorter time-scale active
only at this moment, which allows ®uid particles to be trapped at the critical layer,
forming a region of recirculating ®ow, i.e. a vortex (Smith et al . 2000). This theory,
therefore, yields a description of the generation of bursts of high frequencies at the
spikes and the concurrent roll-up of the shear layer into vortices, which may be asso-
ciated with the omega vortices. The equation governing the local pressure in these
spikes is similar to the Benjamin{Ono equation, commonly used to model nonlinear
dispersive waves and which has soliton solutions that maintain their form as they
travel. Kachanov et al . (1993) have proposed that spikes are solitons governed by the
Benjamin{Ono equation to explain their apparent coherence. This theory, however,
modi­ es the governing equation to include the e¬ects of the critical layer and the
presence there of vortices.

The condition on the velocity pro­ le for breakdown to occur has a separate inter-
pretation to that heralding the onset of spiking. It is also the condition for the
velocity pro­ le in the lower deck to become unstable to a di¬erent instability mech-
anism, which gives rise to inviscid so-called Rayleigh waves (Bodonyi & Smith 1985;
Tutty & Cowley 1986). These waves are possible due to the maximum in the shear
in the velocity pro­ le. Here they have wavelengths comparable with the thickness
of the lower deck and correspondingly high frequencies, higher than those of both
the TS wave and the spikes. The onset of instability has the interesting theoretical
feature that, apart from the condition that the waves are relatively long Rayleigh
waves and so of low frequency (although still much shorter/higher frequency than TS
waves), there is no preferred wavelength for the disturbance. This allows the rational
derivation of equations governing a three-dimensional wave packet of weakly nonlin-
ear disturbances (see Savin et al . (1998) in a slightly di¬erent context and Bowles &
Smith (2000)). These waves can be directly associated with the random oscillations
of ­ gure 5b and the uncertainty or turbulence measured on the shear layer. Indeed,
Brown & Smith (1999) have used similar equations to investigate the spreading of a
turbulent spot. The theory predicts that the wave packet should primarily move with
a speed c, the velocity of the high-shear layer, in agreement with the experiments of
Borodulin & Kachanov (1989). The shear layers that arise in cross-®ow instability
breakdown in a similar way. A study of the stability of velocity pro­ les generated
by DNS by Wintergerste & Kleiser (1998) shows that, in this case, the frequencies
present in the wave packet shift to higher values as transition proceeds, although the
disturbance retains the same velocity as that of the shear layer. This suggests that,
as predicted by the current theory, the disturbance at onset consists of relatively
long, low-frequency Rayleigh waves.

5. Conclusion

This article has shown how the structure and mechanism of the late stages of tran-
sition of boundary layers are being clari­ ed by new experimental and theoretical
approaches developed by young researchers. We have seen how the wavelet trans-
form has captured the bursts of high-frequency disturbance that occur. The exact
three-dimensional nature of the ­ nal breakdown is becoming clear through exper-
imental and computational results. Finally, a theoretical approach that describes
transition at high Reynolds numbers as a series of singularities, each triggering the
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onset of new physics, has been presented. In its present form, the theory is mainly
only two dimensional, describing only the ®ow along the centre of the -vortex. Its
robustness to three-dimensional extension still needs to be veri­ ed. However, its suc-
cess in incorporating the entrance of normal pressure gradients, vortex roll-up and
shear-layer instability show that it o¬ers hope for a theoretical understanding of deep
transition and can act as a starting point for exciting future developments.

I thank Jonathan Healey, Sebastian Bake and Kenny Breuer for their help in preparing this
paper and supplying ¯gures. Thanks are also due to Jim Shaikh and Frank Smith for many
invaluable discussions.
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